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We study the diffusion phenomena on the negatively curved surface made up of congruent heptagons. Unlike
the usual two-dimensional plane, this structure makes the boundary increase exponentially with the distance
from the center, and hence the displacement of a classical random walker increases linearly in time. The
diffusion of a quantum particle put on the heptagonal lattice is also studied in the framework of the tight-
binding model Hamiltonian, and we again find the linear diffusion like the classical random walk. A compari-
son with diffusion on complex networks is also made.
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The transport phenomena have been extensively studied
on various spatial structures to reveal the characteristic ther-
mal and electrical properties of materials. The random walk
is one of the classical topics for studying those phenomena in
the nonequilibrium statistical physics �1�, and the transport
on highly disordered systems such as complex networks is
also of recent research interest �2–4�. Since the average path
length is often greatly reduced in complex networks, one can
easily expect that a particle diffuses there faster than on the
ordinary regular lattice structures.

Recently, the surface with a constant negative Gaussian
curvature is under active investigation to study geometrical
effects on the critical phenomena �5,6�. A negative Gaussian
curvature means that the surface locally looks like a uniform
saddle everywhere, with the resulting surface getting highly
curled as one moves outward �7�. Consequently, the bound-
ary length of a circle with radius r is given by 2� sinh r,
rather than by 2�r �8�, which means in turn that the charac-
teristic path length increases only logarithmically with the
system size N �6�. For a positively curved surface, the system
becomes eventually closed, like a sphere, where the magni-
tude of curvature has to approach zero in the thermodynamic
limit. Accordingly, there is little reason to study this case
separately. In contrast, surfaces of a constant negative Gauss-
ian curvature can be extended indefinitely, which makes such
a geometry apt for studying novel physical properties. Fur-
thermore, the development of nanotechnology can make it
possible to construct such a structure in reality, and the
physical properties discovered here are also of practical im-
portance. There already exist theoretical interests in nega-
tively curved nanostructures with a very large surface area
embedded in a limited volume �9�.

It has been reported that the hyperbolic Brownian motion
has a limited direction �10� with a constant outward drift
�11�. Such nontrivial behaviors are nothing mysterious and
directly related to the exponentially increasing length of a
boundary: Since there is always a larger number of points
outside than inside by some constant proportion, a random
walker tends to move outward, which allows the random
walker only a limited direction �12�. However, the validity of

such a simple geometric understanding of the fast classical
diffusion needs to be taken carefully if one compares the
classical diffusion with the quantum one, which composes
the main motivation of this Brief Report.

In this work, we present how to simulate the random walk
on such a geometry and reconfirm the linear classical diffu-
sion for a heptagonal lattice structure. The quantum diffusion
of a particle is then investigated in comparison both with the
classical diffusion behavior and with Ref. �2� in which the
quantum diffusion time has been shown to scale as �q
�N�−1 while �c�N� for the classical diffusion. Also in Ref.
�3�, quantum mechanical transport on graphs has been shown
to be faster than the classical one, except on some finite
treelike graphs. In comparison, �q��c is revealed in the
present work on the heptagonal lattice geometry. It is re-
markable that one can drastically accelerate the transport by
introducing heptagonal plaquettes to the lattice �9�.

Let us describe the structure of the heptagonal lattice.
Similarly to the two-dimensional �2D� plane which can be
covered by congruent triangles, squares, and hexagons, a
negatively curved surface can be tiled by polygons through
the hyperbolic tessellation �13�: Suppose a lattice where q
regular p-gons meet at each vertex. For example, the trian-
gular lattice is denoted as p=3 and q=6. It is known that the
tiling with given p and q covers the negatively curved sur-
face if �p−2��q−2��4. If we choose its basic element as the
simplest polygon, the regular triangle, at least seven triangles
should meet at each vertex leading to �p ,q�= �3,7�. Taking
its dual lattice, we obtain the heptagonal lattice structure
with �p ,q�= �7,3�. The resulting structure can be most suit-
ably represented in the Poincaré disk �14� as in Fig. 1�a�.
Since the heptagons are located in a concentric fashion, we
denote the central heptagon as the first level. Accordingly, its
seven nearest-neighbor heptagons constitute the second
level, and the next nearest ones the third level, and so on.
Figure 1�a� thus describes the heptagonal lattice up to the
level l=4. Let H�l� be the set of heptagons in the lth level.
The set of vertices on the outward boundary of H�l� is called
the lth layer. As one can see, this structure uniformly and
completely fills the surface and provides an adequate tool for
studying physics of the negative Gaussian curvature. For nu-
merical calculations, we may use the heptagonal lattice con-
structed up to some finite level, L, and capture the finite size
effects by varying L.*Corresponding author. beomjun@skku.edu
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We first study numerically the random walk problem in
our heptagonal lattice structure, and the results are compared
with numerical solutions of the diffusion equation for the
hyperbolic geometry. A possible way of simulating a random
walker on the heptagonal lattice is to identify the connection
structure first and then let a particle move along the edges. In
Fig. 2�a�, the position of the random walker measured by the
level l is shown as a function of the time step n for the
heptagonal lattices of sizes L=7, 10, and 14. It is clearly

shown that the random walker drifts away from the starting
position l=1 linearly in time. As the lattice becomes larger
�as L is increased�, the linear diffusion regime becomes ex-
tended, indicating �l	�n in the thermodynamic limit. One
drawback of this approach is that the number of points in-
creases exponentially as we add concentric layers. The
memory constraint restricts the distance from the origin, and
therefore the results severely suffer from finiteness of the
model system under consideration.

A better alternative is obtained from the hyperbolic tessel-
lation. Since the heptagonal lattice is dual to �3,7�, the tran-
sition between the neighboring points coincides with reflect-
ing a hyperbolic triangle �see Fig. 1�c��. Since the Poincaré
disk can be identified with a unit disk on the complex plane,
we start from a regular triangle �z1 ,z2 ,z3� where zi’s are com-
plex numbers. Let one of the vertices, say z1, be located at
the origin. Setting the interior angle at that point to be 2� /7,
the triangle is regular only when 
z1−z2
= 
z1−z3
�0.496 97,
as this surface has its own intrinsic length scale, i.e., the
curvature �14�. If a triangle �zi ,zj ,zk� is reflected around the
edge along zi and zj, we get a new triangle �zi ,zj ,zk�� with
zk�=w+�2 / �zk− w̄�, where w= �
zi
2zj −zi
zj
2−zi+zj� / �zizj

−zizj�, �= 
w−zi 
 = 
w−zj
, and z̄ is the complex conjugate of
z. The center of a triangle, z, has the hyperbolic distance
from the origin by dh�z�=ln��1+ 
z
� / �1− 
z
��. Note that dh

diverges to infinity as 
z
→1, which is consistent with the
definition of the Poincaré disk. The result is depicted in Fig.
2�b�, which clearly shows that the distance is linearly pro-
portional to time. The numerical inaccuracy becomes larger
as we repeat the reflection of triangles. In order to confirm
the origin of the deviation from the linear behavior �dh	�n
at large n, we intentionally assign numerical precision and
observe how �dh	 depends on it. In Fig. 2�b�, it is seen that as
we use better numerical precision, the linear regime becomes
more extended, indicating that the deviation from the linear
behavior originates from the simple artifact of the numerical
accuracy. Beyond the deviation point of each curve in Fig. 2,
the numerical values are not trustworthy and thus the de-
crease of �dh	 should not be taken as real.

For the random walk on a 2D flat surface, the walker has
zero probability of escape by Pólya’s theorem which states
that the walk becomes transient for dimensions larger than
two �1�. If we denote the probability density of finding a
particle at a position r after time t as ��r , t�, the diffusion
process is described by �� /�t=�2�. Solving this equation
by Fourier transformation, one can see that the expected dis-
placement from the origin is proportional to the square root
of time in the 2D flat surface. The Laplace operator �2 is
changed to the Laplace-Beltrami operator for the hyperbolic
metric �15�,

	 =
1

sinh r

�

�r
�sinh r

�

�r
 +

1

sinh2 r

�2

�
2 , �1�

and we get the solution of the hyperbolic diffusion equation,
�� /�t=	� �11,16�:

��r,
;t� �
e−t/4

t3/2 � � dr�d
���r�,
�;0�I�t,��sinh r� �2�

FIG. 1. �a� Heptagonal lattice represented on the Poincaré disk
with the total number of levels L=4. The metric is given in such a
way that all heptagons are congruent and the circle indicates the
points at infinity. �b� Random walk on the heptagonal lattice where
a walker at the black dot has three choices �colored in gray� at each
time. �c� In the dual lattice, walking around a heptagon is equivalent
to the reflection of a triangle.
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FIG. 2. �Color online� �a� Average level �l	 of the random
walker versus the time n. The heptagonal lattice of the size L is first
built, and we perform random walks as in Fig. 1�b�. We see �l	
�n for small n, while �l	 eventually saturates as the walker ap-
proaches the external boundary. �b� Average distance �dh	 from the
origin versus the time n, obtained from the method in Fig. 1�c�. The
deviation from the linear behavior is not due to the finiteness of the
lattice as in �a�, but due to accumulated numerical errors. All the
averages were taken from 103 independent realizations.
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with the distance � between two positions �r ,
� and �r� ,
��,
and I�t ,�����

��se−s2/4t /�cosh s−cosh ��ds. The numerical
integration is then performed to get the result presented in
Fig. 3, which again shows the linear diffusion �r	� t. We thus
conclude that our different approaches, i.e., discrete random
walks by triangle reflections on the Poincaré disk and the
solution of the hyperbolic diffusion equation, unanimously
confirm that the distance from the origin increases linearly in
time. In comparison to �d	��t for the 2D flat surface, the
diffusion occurs much faster in the negatively curved sur-
face.

We next study the diffusion of a tight-binding quantum
particle in the heptagonal lattice. The quantum diffusion phe-
nomena, and the existence and nature of the localization
transition have been studied on regular lattice structures for a
long time. Motivated by the intensive research interest of
complex networks, recent years have observed the beginning
of research on quantum mechanical systems put on the struc-
ture of complex networks �2,3,17�. We assume that the wave
function is localized on the first layer containing seven points
�see Fig. 1�a��. The time evolution of the quantum particle is
governed by the Schrödinger equation i�� /�t�
	=H
	 ��
�1�. By using the perfectly localized states as basis kets, we
apply the tight-binding approximation that Hij =1�0� if two
points i and j are connected �not connected�. The
Schrödinger equation is then numerically integrated by the
fourth order Runge-Kutta method. The spreading of the wave
packet is measured by the average layer, �l	, depicted in Fig.
4. Again, one can see clearly that the particle diffuses lin-
early in time as in the classical diffusion. The saturation
comes from the finiteness of our lattice. It is to be noted that
in the negatively curved heptagonal lattice, both the quantum
and the classical diffusion exhibit the linear diffusion.

We then take an alternative approach to investigate the
quantum diffusion problem, through the use of the mapping
of the above tight-binding Hamiltonian to the one for a free
particle. We note that the shift of energy by a constant
amount does not change any measurable quantity and makes
the transformation H→H−kI with a degree k �the number
of neighbors, e.g., k=3 for the heptagonal lattice� and the
identity operator I. This simple transformation makes the
Hamiltonian proportional to the lattice Laplacian, except for

the outermost points where k�3. In short, the tight-binding
Hamiltonian can be phenomenologically treated as that of
the free particle simulated on the discrete lattice, described
by i�� /�t= �� with the wave function �= �r 
	. Accord-
ingly, if we substitute the time t in the Schrödinger equation
by the imaginary time it, it takes exactly the same form as
the diffusion equation. It is then straightforward to apply the
previous result on classical diffusion in hyperbolic lattice
�see Fig. 3� to obtain the propagating solution of the quantum
particle on the hyperbolic plane �16� �see Fig. 5�. It is re-
vealed that the average distance again exhibits the linear dif-
fusion property as shown in the inset of Fig. 5 in accordance
with Fig. 4.

In the Euclidean or disordered structures, the quantum
diffusion has been known to be faster than the classical one
�2,3�. In contrast, the classical motion now becomes compa-
rable to the quantum one in speed on the negatively curved
surface, with the aid of the geometrical drift. Some differ-
ences, however, seem to remain: The geometrical drift
pushes the particle only in the outward direction from the
starting point. Based on the report for tree structures, a quan-
tum particle is believed to readily propagate back to the
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FIG. 3. �Color online� The solution ��r , t� of the hyperbolic
diffusion equation. Inset: Average distance from the origin �r	
=�r��r�sinh rdr increases linearly in time.
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FIG. 4. �Color online� Diffusion of the tight-binding quantum
particle on the heptagonal lattice. As the time t evolves, the quan-
tum particle diffuses toward the upper layers. Note that the linear
regime extends as the size becomes larger.
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FIG. 5. �Color online� Solution of the quantum free particle
Schrödinger equation in the negatively curved surface. Inset: Aver-
age distance from the origin �r	=�r
��r�
2sinh rdr is shown to in-
crease linearly in time.
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origin �18�. In fact, a classically diffusing particle acts some-
what like a flow, even if the initial direction may be chosen
randomly, in the sense that it appears to have some nonzero
velocity. If one introduces a real flow here, however, the flux
would soon become negligible because of the exponentially
increasing boundary. Our observation is qualitatively similar
to the report for the Bethe lattice �11�, since the angular
movement is effectively suppressed in the long run. Yet it is
still notable that the heptagonal lattice provides a better rep-
resentation for the negatively curved surface, and that the
numerical simulation could be taken with more ease by the
hyperbolic tessellation technique explained above. One may
expect that the transport can be enhanced by introducing a
negative Gaussian curvature in biological or engineering ap-
plications.

In summary, we have investigated the classical and quan-
tum diffusions in the heptagonal lattice, which is a discrete
representation of the surface with a constant negative curva-
ture. Even a classical particle has been shown to diffuse so
fast that the average displacement is linearly proportional to
time. The quantum diffusion has also been shown to exhibit
the same linear diffusion behavior. Those results on discrete
lattices were also confirmed in a continuum by solving a
hyperbolic diffusion equation in real and imaginary times for
classical and quantum diffusion, respectively.
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